
DFEP: Distributed Funding-Based Edge
Partitioning

Alessio Guerrieri(B) and Alberto Montresor

DISI, University of Trento, via Sommarive 9, Trento, Italy
{a.guerrieri,alberto.montresor}@unitn.it

Abstract. As graphs become bigger, the need to efficiently partition
them becomes more pressing. Most graph partitioning algorithms subdi-
vide the vertex set into partitions of similar size, trying to keep the num-
ber of cut edges as small as possible. An alternative approach divides the
edge set, with the goal of obtaining more balanced partitions in presence
of high-degree nodes, such as hubs in real world networks, that can be
split between distinct partitions. We introduce dfep, a distributed edge
partitioning algorithm based on the metaphor of currency distribution.
Each partition starts from a random edge and expands independently
by spending currency to buy neighboring edges. After each iteration,
smaller partitions receive an higher amount of currency to help them
recover lost ground and reach a similar size to the other partitions. Sim-
ulation experiments show that dfep is efficient and obtains consistently
balanced partitions. Implementations on both Hadoop and Spark show
the scalability of our approach.

1 Introduction

One of the latest trend in computer science is the emergence of the “big data”
phenomena that concerns the retrieval, management and analysis of datasets of
extremely large dimensions, coming from wildly different settings.

Although the collected data is often structured, several interesting datasets
are unstructured and can be modeled as graphs. An obvious example is the World
Wide Web, but there are many other examples such as social network topologies,
biological systems or even road networks. While graph problems have been stud-
ied since before the birth of computer science, the sheer size of these datasets
makes classic graph problems extremely difficult. Even solving the shortest path
problem needs too many iterations to complete when the graph is too big to fit
into memory. The big Internet players (such as Google, Yahoo and Facebook)
have invested large amount of money in the development of novel distributed
frameworks for the analysis of very large graphs and are working on novel solu-
tions of many interesting classic problems in this new context [2,8].

The most common approach to cope with this huge amount of data using mul-
tiple processes or machines is to divide the graph into non-overlapping subsets,
called partitions. Edges between vertices that have been assigned to distinct par-
titions, called cut edges in the literature, act as communication channels between
the partitions themselves.
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 346–358, 2015.
DOI: 10.1007/978-3-662-48096-0 27

DFEP: Distributed Funding-Based Edge Partitioning 347

When such partitions are assigned to a set of independent computing nodes
(being them actual machines or virtual executors like processes and threads, or
even mappers and reducers in the MapReduce model), their size matters: the
largest of them must fit in the memory of a single computing entity. A common
solution to the problem of optimizing the usage of memory in such cases is to
compute partitions that have similar sizes. Dividing the vertex set in equal-sized
partitions can still lead to an unbalanced subdivision, though: having the same
amount of vertices does not imply having the same size, given the unknown
distribution of their degrees and the potential high assortativity of some graphs.

In this paper we study a different approach: edges are partitioned into disjoint
subsets, while vertices are associated to edges and thus may belong to multiple
partitions at the same time. The advantage of such approach is that it makes
possible to obtain well-balanced partitions, because the adjacency lists of high-
degree nodes may be subdivided among multiple computing nodes. A good load
balancing enables the use of a smaller number of computing units.

This type of partitioning can then be used by edge-centric programming
models to speed up computation. For example, the Gather-Apply-Scatter model
introduced by GraphLab [4] is executed independently on each edge in both the
Gather and Scatter phase, and thus needs an efficient edge partitioning. Their
system uses Powergraph [4], a one-pass greedy edge partitioning algorithm that
can scale to huge graphs.

The main contribution of this paper is dfep, a distributed graph partition-
ing algorithm that divides the edge set in partitions of similar size. The paper
thoroughly evaluates dfep, using both simulations and then implementation on
top of both Hadoop and Spark, using the Amazon EC2 cloud. The experiments
show that dfep is efficient, scalable and obtains consistently good partitions.

2 Edge Partitioning

The task of subdividing a graph into partitions of similar size, or partitioning,
is a classical problem in graph processing, and has many clear applications in
both distributed and parallel graph algorithms. Most solutions, from Lin’s and
Kernighan’s algorithm [6] in the 70’s to more recent approaches [10], try to solve
vertex partitioning. This approach, however, may lead to unbalanced partitions,
because even if they end up having the same amount of vertices, an unbalanced
distribution of edges may cause some subgraphs to be much larger than oth-
ers. Approaching the problem from an edge perspective, thus, may bring us to
interesting and practical results.

Given a graph G = (V,E) and a parameter K, an edge partitioning of G sub-
divides all edges into a collection E1, . . . , EK of non-overlapping edge partitions:

E = ∪K
i=1Ei ∀i, j : i �= j ⇒ Ei ∩ Ej = ∅

The i-th partition is associated with a vertex set Vi, composed of the end points
of its edges:

Vi = {u : (u, v) ∈ Ei ∨ (v, u) ∈ Ei}

348 A. Guerrieri and A. Montresor

Fig. 1. Edge partitioning example: each edge appears in only one partition, while
frontier vertices may appear in more than one partition

The edges of each partition, together with the associated vertices, form the
subgraph Gi = (Vi, Ei) of G, as illustrated in Fig. 1.

The size of a partition is proportional to the amount of edges and vertices
|Ei| + |Vi| belonging to it. Given that each edge (u, v) ∈ Ei contributes with
at most two vertices, |Vi| = O(|Ei|) and the amount of memory needed to
store a partition is strictly proportional to the number of its edges. This fact
can be exploited to fairly distribute the load among machines. Vertices may be
replicated among several partitions, in which case are called frontier vertices.
We denote with Fi ⊆ Vi the set of vertices that are frontier in the i-th partition.

3 Distributed Funding-Based Edge Partitioning

The properties that a “good” partitioning must possess are the following:

– Balance: partition sizes should be as close as possible to the average size
|E|/K, where K is the number of partitions, to have a similar computational
load in each partition. Our main goal is to minimize the size of the largest
partition.

– Communication Efficiency: given that the amount of communication that
crosses the border of a partition depends on the number of its frontier vertices,
the total sum

∑K
i=1 |Fi| must be reduced as much as possible.

– Connectedness: the subgraphs induced by the partitions should be as con-
nected as possible. This is not a strict requirement and later in this section
we illustrate a variant of our algorithm that relax it.

Balance is the main goal; it would be simple to just split the edges in K
sets of size ≈ |E|/K, but this could have severe implications on communication
efficiency and connectedness. The approach proposed here is thus heuristic in
nature and provides an approximate solution to the above requirements.

Since the purpose is to compute the edge partitioning as a preprocessing step
to help the analysis of very large graphs, we need the edge partitioning algorithm
to be distributed as well. As with most distributed algorithms, we are mostly
interested in minimizing the amount of communication steps needed to complete
the partitioning.

Ideally, a simple solution could work as follows: to compute K partitions,
K edges are chosen at random and each partition grows around those edges.

DFEP: Distributed Funding-Based Edge Partitioning 349

Then, all partitions take control of the edges that are neighbors (i.e., they share
one vertex) of those already in control and are not taken by other partitions.
All partitions will incrementally get larger and larger until all edges have been
taken. Unfortunately, this simple approach does not work well in practice, since
the starting position may greatly influence the size of the partitions. A partition
that starts from the center of the graph will have more space to expand than a
partition that starts from the border and/or very close to another partition.

Table 1. Notation

d(v) Degree of vertex v

E(v) Edges incident on vertex v

V (e) Vertices incident on edge e

Mi[v] Units of partition i in vertex v

Mi[e] Units of partition i in edge e

Ei Edges bought by partition i

owner[e] The partition that owns edge e

Fig. 2. Step 1

Fig. 3. Step 2

Algorithm 1. dfep Init
Executed by the coordinator

foreach edge e ∈ E do
owner[e] = ⊥

for i = 1 to K do
v ← random(V)
Mi[v] = |E|/K

Algorithm 3. dfep Step 2
Executed at each edge e

best = argmaxp(Mp(e))
if owner[e] = ⊥ and Mbest(e) ≥ 1 then

owner[e] = best
Mbest[e] = Mbest[e] − 1

for i = 1 to K do
if owner[e] = i then

foreach v ∈ N(e) do
Mi[v] = Mi[v] + Mi[e]/2

else
S = vertices that funded
partition i in e
foreach v ∈ S do

Mi[v] = Mi[v] + Mi[e]/|S|

Mi[e] = 0

Algorithm 2. dfep Step 1
Executed at each vertex v

for i = 1 to K do
if Mi[v] > 0 then

eligible = ∅
foreach e ∈ E(v) do

if owner[e] = ⊥ or
owner[e] = i then

eligible = eligible ∪ {e}

foreach e ∈ eligible do
Mi[e] =
Mi[e] + (Mi[v]/|eligible|)

Mi[v] = 0

Algorithm 4. dfep Step 3
Executed by the coordinator

AVG =
∑

i∈[1...K](|Ei|)/K
for i = 1 to K do

funding = min(10, AV G/Ei)
foreach v ∈ V do

if Mi(v) > 0 then
Mi(v) = Mi(v) + funding

350 A. Guerrieri and A. Montresor

To overcome this limitation, we introduce dfep (Distributed Funding-based
Edge Partitioning), an algorithm based on concept of “buying” the edges through
an amount of funding assigned to partitions. Initially, each partition is assigned
the same amount of funding and an initial, randomly-selected vertex. The algo-
rithm is then organized in a sequence of rounds. During each round, the parti-
tions try to acquire the edges that are neighbors to those already taken, while
a coordinator monitors the sizes of each partition and sends additional units of
funding to the smaller ones, to help them overcome their slow start.

Table 1 contains the notation used in the pseudocode of the algorithm. For
each vertex and edge we keep track of the amount of units that each partition
has committed to that vertex or edge. Algorithm 1 presents the code executed
at the initialization step: each partition chooses a vertex at random and assigns
all the initial units to it. The edges are initialized as unassigned. Each round of
the algorithm is then divided in three steps. In the first step (Algorithm2), each
vertex propagates the units of funding to the outgoing edges. For each partition,
the vertex can move its funding only on edges that are free or owned by that
partition, dividing the available units of funding equally among all these eligible
edges. During the second step (Algorithm 3), each free edge is bought by the
partition which has the most units committed in that edge and the units of
funding of the losing partitions are sent back in equal parts to the vertices that
contributed to that funding. The winning partition loses an unit of funding to
pay for the edge and the remaining funding is divided in two equal parts and sent
to the vertices composing the edge. In the third step (Algorithm4), eachpartition
receives an amount of funding inversely proportional to the number of edges it
has already bought. This funding is distributed between all the vertices in which
the partition has already committed a positive amount of funding. Two examples
are illustrated in Figs. 2–3. The red and blue color represents partitions, while
black edges are still free.

dfep creates partitions that are connected subgraphs of the original graph,
since currency cannot traverse an edge that has not been bought by that parti-
tion. It can be implemented in a distributed framework: both Step 1 and Step 2
are completely decentralized; Step 3, while centralized, needs an amount of com-
putation that is only linear in the number of partitions.

In our implementation, the amount of initial funding is equal to what would
be needed to buy an amount of edges equal to the optimal sized partition.
A smaller quantity would not decrease the precision of the algorithm, but it
would slow it down during the first rounds. The cap on the units of funding to
be given to a small partition during each round (10 units in our implementation)
avoids the over-funding of a small partition during the first rounds.

In a distributed setting the algorithm will follow the Bulk Synchronous
Processing model: each machine receives a subset of the graph, executes Step 1
on each of its vertices independently, sends money to the correct edges (that
may be on other machines), wait for the other machines to finish Step 1, and
executes Step 2. Step 3 must be executed by a coordinator, but the amount of
computation is minimal since the current sizes of the partitions can be computed

DFEP: Distributed Funding-Based Edge Partitioning 351

via aggregated counting by the machines. Once the coordinator has computed
the amount of funding for each partition, it can send this information to the
machines that will apply it independently before Step 1 of the successive itera-
tion. If the coordinator finds that all edges have been assigned, it will terminate
the algorithm.

3.1 Variant: DFEPC

If the diameter is very large, there is the possibility that a poor starting vertex
is chosen at the beginning of the round. A partition may be cut off from the
rest of the graph, thus creating unbalanced partitions. A possible solution for
this problem involves adding an additional dynamic, at the cost of losing the
connectedness property.

A partition is called poor at round i if its size is less than µ
p , with µ being

the average size of partitions at round i and p being an additional parameter;
otherwise, it is called rich. A poor partition can commit units on already bought
edges that are owned by rich partitions and try to buy them. This addition to
the algorithm allows small partitions to catch up to the bigger ones even if they
have no free neighboring edges and results in more balanced partitions in graphs
with larger diameter.

4 Results

We evaluated our algorithms with both simulations (experiments repeated 100
times) and actual implementations (experiments repeated 20 times. The metrics
considered to evaluate dfep in our simulation engine are the following:

– Rounds: the number of rounds executed by dfep to complete the partition-
ing. This is a good measure of the amount of synchronization needed and can
be a good indicator of the eventual running time in a real world scenario.

– Balance: Each partition should be as close as possible to the same size. To
obtain a measure of the balance between the partitions we first normalize the
sizes, so that a partition of size 1 represents a partition with exactly |E|/K
edges. We then measure the standard deviation of the normalized sizes.

– Communication Costs: Each partition will have to send a message for each
of its frontier vertices, to share their state with the other partitions. We thus
use the frontier nodes to estimate the communication costs: M =

∑K
i=1 Fi.

Since the simulation engine is not able to cope with larger datasets, we used
different datasets for the experiments in the simulation engine and the real world
experiments. For both types of datasets we list the size of the graphs, the diam-
eter D, the clustering coefficient CC and the clustering coefficient RCC of a
random graph with the same size.

The first four datasets in Table 2 have been used in the simulation engine.
astroph is a collaboration network in the astrophysics field, while email-enron
is an email communication network from Enron. Both datasets are small-world,

352 A. Guerrieri and A. Montresor

as shown by the small diameter. The usroads dataset is a road networking the
US, and thus is a good example of a large diameter network. Finally, wordnet
is a synonym network, with small diameter and very high clustering coefficient.

The three larger graphs are used in our implementation of dfep on the
Amazon EC2 cloud. dblp is the co-authorship network from the DBLP archive,
youtube is the friendship graph between the users of the service while amazon
is a co-purchasing network of the products sold by the website.

All the networks have been taken from the SNAP graph library [7] and
cleaned for our use, by making directed edges undirected and removing dis-
connected components.

Table 2. Datasets used in the simulation engine (1–4) and EC2 (5–7)

Name |V | |E| D CC RCC

1 astroph 17903 196972 14 1.34 × 10−1 1.23 × 10−3

2 email-enron 33696 180811 13 3.01 × 10−2 3.19 × 10−4

3 usroads 126146 161950 617 1.45 × 10−2 2.03 × 10−5

4 wordnet 75606 231622 14 7.12 × 10−2 8.10 × 10−5

5 dblp 317080 1049866 21 1.28 × 10−1 2.09 × 10−5

6 youtube 1134890 2987624 20 2.08 × 10−3 4.64 × 10−6

7 amazon 400727 2349869 18 5.99 × 10−2 2.93 × 10−5

4.1 Simulations

Figure 4 shows the performance of the two versions of dfep against the para-
meter K, in the astroph and usroads datasets. As expected, the larger the
number of partitions, the larger is the variance between the sizes of those parti-
tions and the amount of messages that will have to be sent across the network.
The rounds needed to converge to a solution go down with the number of par-
titions, since it will take less time for the partitions to cover the entire graph.

The diameter of a graph is a strong indicator of how our proposed approach
will behave. To test dfep on graphs with similar characteristics but different
diameter we followed a specific protocol: starting from the usroads dataset
(a graph with a very large diameter) we remapped random edges, thus decreasing
the diameter. The remapping has been performed in such a way to keep the
number of triangles as close as possible to the original graph, to avoid introducing
bias in the experiment by radically changing the clustering coefficient.

Figure 5 shows that changing the diameter leads to completely different
behaviors. The size of the largest partitions and the standard deviation of par-
titions size rise steeply with the growth of the diameter, since in a graph with
higher diameter the starting vertices chosen by our algorithm affect more deeply
the quality of the partitioning. As expected, the number of rounds needed by

DFEP: Distributed Funding-Based Edge Partitioning 353

 1

 1.5

 2

 2.5

 3

 3.5
S

iz
e

astroph DFEP
DFEPC

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

10 20 30 40 50 60 70 80 90 100

S
iz

e

Number of partitions

usroads DFEP
DFEPC

(a) Size of the largest partition

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

S
ta

nd
ar

d
de

vi
at

io
n astroph DFEP

DFEPC

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

10 20 30 40 50 60 70 80 90 100

S
ta

nd
ar

d
de

vi
at

io
n

Number of partitions

usroads DFEP
DFEPC

(b) Std. Dev. of partition sizes

 25000
 30000
 35000
 40000
 45000
 50000
 55000
 60000

M
es

sa
ge

s

astroph

DFEP
DFEPC

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000

10 20 30 40 50 60 70 80 90 100

M
es

sa
ge

s

Number of partitions

usroads

DFEP
DFEPC

(c) Communication cost

 9.5
 10

 10.5
 11

 11.5
 12

 12.5
 13

R
ou

nd
s

astroph DFEP
DFEPC

 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280

10 20 30 40 50 60 70 80 90 100

R
ou

nd
s

Number of partitions

usroads DFEP
DFEPC

(d) Rounds to converge

Fig. 4. Behavior of dfep and dfepc with varying values of K

dfep to compute the partitioning also rise linearly with the diameter. Since the
partitions will be more interconnected, the amount of messages sent across the
network will decrease steeply with a larger diameter. Our variant of dfep is able
to cope well also in case of graphs with large diameter.

Finally, we compare the two version of dfep against JaBeJa [9] and Power-
Graph [4]. Since JaBeJa is a vertex-partitioning algorithm, its output has been
converted into an edge-partitioning.

PowerGraph processes the graph one edge at a time, assigning it to the best
partition according to which partitions already contain the nodes of the cur-
rent edge. The sequential version of the algorithm needs at each step complete
knowledge of the choices of the previous iteration. The authors also illustrate a
version called “Oblivious PowerGraph” in which each process behaves indepen-
dently on a subset of the edges. The quality of the partitioning thus depends on
the number of independent processes used. In our comparison, we used both the
centralized version (labeled “PowerGraph”) and the oblivious version (labeled
“Oblivious PowerGraph”). In the oblivious version, we tested the algorithm by
simulating two distinct processes.

Both PowerGraph versions create remarkably balanced partitions and are
extremely fast, since they work in a single pass over the graph. On the downside,
their partitions are less connected than dfep and thus incur in more communi-
cation costs.

Figure 6 shows the experimental results over 100 samples, on the four differ-
ent datasets. A pattern can be discerned: the algorithms have wildly different

354 A. Guerrieri and A. Montresor

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 30 40 50 60 70 80 90 100

S
iz

e

Diameter

DFEP
DFEPC

(a) Rel. size of largest partition

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 30 40 50 60 70 80 90 100

M
es

sa
ge

s

Diameter

DFEP
DFEPC

(b) Communication cost

 20

 25

 30

 35

 40

 45

 50

 55

 60

 30 40 50 60 70 80 90 100

R
ou

nd
s

Diameter

DFEP
DFEPC

(c) Rounds needed to converge

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 30 40 50 60 70 80 90 100

S
ta

nd
ar

d
de

vi
at

io
n

Diameter

DFEP
DFEPC

(d) Std. Dev. of partition sizes

Fig. 5. Behavior of dfep and dfepc with varying diameter (K = 20)

behaviors in the small world dataset than in the road network. In the small
world datasets our approaches results in more balanced partitions, while need-
ing less rounds to converge than JaBeJa. In the usroads dataset JaBeJa creates
more balanced partitions, but with a communication costs that is roughly ten
times higher. This result shows the importance of creating partitions that are
as much connected as possible. Powegraph instead gets balanced, but not very
connected partitions in all cases. With the oblivious version of the algorithm the
quality degrades, since the approach will obtain a partitioning of worse quality
the higher the number of the processes that participate in the computation.

Since JaBeJa uses simulated annealing to improve the candidate solution, the
number of round needed is mostly independent from the structure of the graph.
As shown in Fig. 5 the number of rounds dfep needs depend mostly from the
graph diameter. Both versions of PowerGraph work in a single pass over the edge
set, and therefore is a better choice if the amount of computation needed after
the partitioning step is not large enough to warrant a more precise partitioning.

4.2 Experiments in EC2

dfep has been implemented in both Apache Hadoop in the MapReduce model
and in Spark/Graphx, and have been tested over the Amazon EC2 cloud. All
the experiments have been repeated 20 times on m1.medium machines.

DFEP: Distributed Funding-Based Edge Partitioning 355

 0

 1

 2

 3

 4

 5

 6

Astro email usroads wordnet

S
iz

e

d-fep
d-fep Variant

JaBeJa
PowerGraph

ObliviousPowerGraph

(a) Rel. size of largest partition

 0

 20000

 40000

 60000

 80000

 100000

 120000

Astro email usroads wordnet

M
es

sa
ge

s

(b) Communication cost

 0

 50

 100

 150

 200

 250

 300

 350

 400

Astro email usroads wordnet

R
ou

nd
s

(c) Rounds needed to converge

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Astro email usroads wordnet

S
ta

nd
ar

d
de

vi
at

io
n

(d) Std. Dev. of partition sizes

Fig. 6. Comparison between dfep, dfepc, JaBeJa and PowerGraph (K = 20)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 2 4 8 16

T
im

e
(s

)

Computing nodes

Youtube
Amazon

DBLP

(a) Hadoop

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 4 8 16

T
im

e
(s

)

Computing nodes

Youtube
Amazon

DBLP

(b) Spark

Fig. 7. Speedup of real implementation of dfep in the amazon cloud

It was not possible to implement dfep in Hadoop using a single Map-Reduce
round for each iteration while keeping exactly the same structure as in the
pseudocode. Each instance of the Map function is executed on a single vertex,
which will output messages to its neighbor and a copy of itself. Each instance of
the Reduce function will receive a vertex and all the funding sent by the neigh-
bors on common edges. The part of the algorithm that should be executed on
each edge is instead executed by both its neighboring vertices, with special care

356 A. Guerrieri and A. Montresor

to make sure that both executions will get the same results to avoid inconsisten-
cies in the graph. This choice, which sounds counterintuitive, allows us to use
a single Map-Reduce round for each iteration of the algorithm, thus decreasing
the communication and sorting costs inherent in the MapReduce model.

Figure 7a presents the scalability results, when run with the datasets in
Table 2, with K = 20. The algorithm scales with the number of computing
nodes, with a speedup larger than 5 with 16 nodes instead of 2.

Our Spark/Graphx implementation of dfep is still unstable, and thus, while
faster, it is not able to reach the scalability of the Hadoop implementation.
Figure 7b shows a speedup of just 2 with 16 nodes instead of 2 nodes, with a
very large variance.

5 Related Work

The literature on graph partitioning is huge, but given that edge partitioning has
not been studied in equal depth, we will mostly focus on the different approaches
developed to solve vertex graph partitioning. The edge partitioning problem can
be reduced to the vertex partitioning problem by using the line graph of the
original graph, but the massive increase in size makes this approach infeasible.

In both versions, the partitioning problem is not only NP-complete, but even
difficult to approximate [1]. Most work in this field are thus heuristics algorithms
with no guaranteed approximation rate. Kernighan and Lin developed the most
well-known heuristic algorithm for binary graph partitioning in 1970 [6]. At
initialization time, each vertex in the network is randomly assigned to one of
two partitions and the algorithm tries to optimize the vertex cut by exchanging
vertices between the partitions. This approach has been later extended to run
efficiently on multiprocessors by parallelizing the computation of the scoring
function used to choose which vertices should be exchanged [3].

METIS [5] is a more recent and highly successful project that uses a multi-
level partitioning approach to obtain very high quality partitions. The graph is
coarsened into a smaller graph, which is then partitioned and the solution is then
refined to adapt to the original graph. An effort to create a parallelizable version
of the program has lead to P-METIS, a version built for multicore machines.
The quality of the partitions obtained with this approach does not seem to be
of the same quality than the centralized version, as expected.

The presence of additional constraints has driven the research field towards
more specialized algorithms. For example, in the streaming scenario it is infea-
sible to use the classical partitioning algorithm, since the data is continuously
arriving. A greedy algorithm that assign each incoming vertex to a partition has
been proposed [10] and computes partitions of only slightly less quality than
most centralized algorithms.

The two algorithms selected for our comparison are JaBeJa [9] and Power-
graph [4]. JaBeJa is a completely decentralized partitioning algorithm based on
local and global exchanges. Each vertex in the graph is initially mapped to a
random partition. At each iteration, it will try to exchange its mapping with

DFEP: Distributed Funding-Based Edge Partitioning 357

one of its neighbor or with one of the random vertices obtained via a peer selec-
tion algorithm, if the exchange decreases the vertex cut size. An additional layer
of simulated annealing decrease the likelihood of returning to a local minima.
JaBeJa is similar in approach to Kernighan and Lin’s algorithm, but moves
the choices from the partition level to the vertex level, greatly increasing the
possibility for parallelization.

Powergraph instead uses a greedy approach, processing and assigning each
edge before moving to the next. It keeps in memory the current sizes of each
partition and, for each vertex, the set of partitions that contain at least one
edge of that vertex. If both endpoints of the current edge are already inside
one common partition, the edge will be added to that partition. If they have no
partition in common, the node with the most edges still to assign will choose
one of its partitions. If only one node is already in a partition, the edge will be
assigned to that partition. Otherwise, if both nodes are free, the edge will be
assigned to the smallest partition. This heuristic can be run independently on
N subsets of the edge set to parallelize the workload, at the cost of lower quality
partitions.

6 Conclusions

This paper presented dfep, an heuristic distributed edge partitioning algorithm
based on a simple funding model. Our experimental results, obtained through
simulation and through an actual deployment on an Amazon EC2 cluster, show
that dfep scales well and is able to obtain balanced partitions.

As future work, we are working on an efficient Spark implementation of dfep,
to allow us to partition larger graphs and analyze the scalability of our approach.
We will study how does the algorithm behaves in presence of dynamism (such
as addition and deletion of edges) and how to use external information about
nodes and edges to obtain a better partitioning.

References

1. Andreev, K., Räcke, H.: Balanced graph partitioning. In: Proceedings of the 16th

Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2004, pp. 120–124. ACM (2004). doi:10.1145/1007912.1007931

2. Bialecki, A., Cafarella, M., Cutting, D., O’Malley, O.: Hadoop: a framework for
running applications on large clusters built of commodity hardware. Wiki at (2005).
http://lucene.apache.org/hadoop

3. Gilbert, J., Zmijewski, E.: A parallel graph partitioning algorithm for a message-
passing multiprocessor. Int. J. Parallel Program. 16(6), 427–449 (1987)

4. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed
graph-parallel computation on natural graphs. In: Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), pp. 17–30
(2012)

5. Karypis, G., Kumar, V.: METIS: Unstructured graph partitioning and sparse
matrix ordering system, version 2.0. Technical report, University of Minnesota
(1995)

http://dx.doi.org/10.1145/1007912.1007931
http://lucene.apache.org/hadoop

358 A. Guerrieri and A. Montresor

6. Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell
Syst. Tech. J. 49(2), 291–307 (1970)

7. Leskovec, J.: Stanford large network dataset collection (2011). http://snap.
stanford.edu/data/index.html

8. Malewicz, G., Austern, M., Bik, A., Dehnert, J., Horn, I., Leiser, N., Czajkowski,
G.: Pregel: a system for large-scale graph processing. In: Proceedings of the 2010
International Conference on Management of Data, pp. 135–146. ACM (2010)

9. Rahimian, F., Payberah, A.H., Girdzijauskas, S., Jelasity, M., Haridi, S.: Ja-be-
ja: a distributed algorithm for balanced graph partitioning. In: Proceedings of the
7th International Conference on Self-Adaptive and Self-Organizing Systems (SASO
2013), pp. 51–60. IEEE (2013)

10. Tsourakakis, C., Gkantsidis, C., Radunovic, B., Vojnovic, M.: Fennel: Stream-
ing Graph Partitioning For Massive Scale Graphs. Microsoft Research, Cambridge
(2012)

http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html

	DFEP: Distributed Funding-Based Edge Partitioning
	1 Introduction
	2 Edge Partitioning
	3 Distributed Funding-Based Edge Partitioning
	3.1 Variant: DFEPC

	4 Results
	4.1 Simulations
	4.2 Experiments in EC2

	5 Related Work
	6 Conclusions
	References

