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A Distributed Algorithm for Large-Scale Graph Partitioning

FATEMEH RAHIMIAN, KTH Royal Institute of Technology and SICS Swedish ICT, Sweden
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MARK JELASITY, MTA SZTE Research Group on AI, Hungarian Academy of Sciences and University
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Balanced graph partitioning is an NP-complete problem with a wide range of applications. These applications
include many large-scale distributed problems, including the optimal storage of large sets of graph-structured
data over several hosts. However, in very large-scale distributed scenarios, state-of-the-art algorithms are
not directly applicable because they typically involve frequent global operations over the entire graph. In
this article, we propose a fully distributed algorithm called JA-BE-JA that uses local search and simulated
annealing techniques for two types of graph partitioning: edge-cut partitioning and vertex-cut partitioning.
The algorithm is massively parallel: There is no central coordination, each vertex is processed independently,
and only the direct neighbors of a vertex and a small subset of random vertices in the graph need to be
known locally. Strict synchronization is not required. These features allow JA-BE-JA to be easily adapted
to any distributed graph-processing system from data centers to fully distributed networks. We show that
the minimal edge-cut value empirically achieved by JA-BE-JA is comparable to state-of-the-art centralized
algorithms such as METIS. In particular, on large social networks, JA-BE-JA outperforms METIS. We also show
that JA-BE-JA computes very low vertex-cuts, which are proved significantly more effective than edge-cuts for
processing most real-world graphs.
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General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: graph partitioning, edge-cut partitioning, vertex-cut partitioning,
distributed algorithm, load balancing, simulated annealing
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1. INTRODUCTION

A wide variety of real-world data can be naturally described as graphs. Take, for in-
stance, communication networks, social networks, or biological networks. With the ever
increasing size of such networks, it is crucial to exploit the natural connectedness of
their data in order to store and process them efficiently. Hence, we are now observing an
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12:2 F. Rahimian et al.

Fig. 1. Illustration of graph partitioning. The color of each vertex represents the partition it belongs to. The
colored links are connections between two vertices in the same partition. The gray links are interpartition
connections.

upsurge in the development of distributed and parallel graph processing tools and tech-
niques. Since the size of the graphs (in terms of both vertices and edges) can grow very
large, sometimes we have to partition them into multiple smaller clusters that can be
processed efficiently in parallel. Unlike conventional parallel data processing, parallel
graph processing requires each vertex or edge to be processed in the context of its neigh-
borhood. Therefore, it is important to maintain the locality of information while par-
titioning the graph across multiple (virtual) machines. It is also important to produce
equal-size partitions that distribute the computational load evenly between clusters.

Finding good partitions is a well-known and well-studied problem in graph theory
[Hendrickson and Leland 1995]. In its classical form, graph partitioning usually refers
to edge-cut partitioning; that is, to divide vertices of a graph into disjoint clusters of
nearly equal size, whereas the number of edges that span separated clusters is minimal.
Figures 1(a) and 1(b) are examples of a poor and a good edge-cut partitioning of a graph,
respectively. Note that, if each partition in this graph represents, for instance, a server
that stores and maintains data of the vertices it holds, then the interpartition links are
translated into communication overhead between the servers, which should be kept as
small as possible. Whereas a good edge-cut partitioning can reduce such communication
overheads and also balance the number of vertices in each partition, there are some
studies [Abou-Rjeili and Karypis 2006; Lang 2004; Leskovec et al. 2009] that show
tools that utilize edge-cut partitioning do not achieve good performance on real-world
graphs (which are mostly power-law graphs). This is mainly due to an unbalanced
number of edges in each cluster combined with the fact that the complexity of most
graph computations is influenced by the order of edges.

In contrast, both theory [Albert et al. 2000] and practice [Gonzalez et al. 2012;
Xin et al. 2013] prove that power-law graphs (e.g., social networks or collaboration
networks) can be efficiently processed in parallel if vertex-cuts are used. As opposed
to edge-cut partitioning, a vertex-cut partitioning divides the edges of a graph into
equal-size clusters. The vertices that hold the endpoints of an edge are also placed
in the same cluster as the edge itself. However, the vertices are not unique across
clusters and might have to be replicated (cut) due to the distribution of their edges
across different clusters. A good vertex-cut is one that requires a minimum number of
replicas. Figure 2 illustrates the difference between these two types of partitioning.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.



A Distributed Algorithm for Large-Scale Graph Partitioning 12:3

Fig. 2. Partitioning a graph into three clusters.

In this article, we focus on processing extremely large-scale graphs; for example,
user relationship and interaction graphs from online social networking services such
as Facebook or Twitter, resulting in graphs with billions of vertices and hundreds of
billions of edges. The very large scale of the graphs we target poses a major challenge.
Although numerous algorithms are known for graph partitioning [Enright et al. 2002;
Karypis and Kumar 1999a, 1998; Kernighan and Lin 1970; Meyerhenke et al. 2008,
2009; Sanders and Schulz 2012, 2011], including parallel ones, most of the techniques
involved assume a form of cheap random access to the entire graph. In contrast to this,
large-scale graphs do not fit into the main memory of a single computer; in fact, they
often do not fit on a single local file system either. Worse still, the graph can be fully
distributed as well, with only very few vertices hosted on a single computer.

We provide a distributed balanced graph partitioning algorithm, called JA-BE-
JA, both for edge-cut and vertex-cut partitioning. Choosing between edge-cut and
vertex-partitioning depends on the application, and JA-BE-JA, to the best of our
knowledge, is the only algorithm that can be applied in both models. JA-BE-JA is a
decentralized local search algorithm, and it does not require any global knowledge
of the graph topology. That is, we do not have cheap access to the entire graph, and
we have to process it with only partial information. Each vertex of the graph is a
processing unit, with local information about its neighboring vertices and a small
subset of random vertices in the graph, which it acquires by purely local interactions.
Initially, every vertex/edge is assigned to a random partition, and, over time, vertices
communicate and improve upon the initial assignment.

Our algorithm is uniquely designed to partition extremely large graphs. The algo-
rithm achieves this through its locality, simplicity, and lack of synchronization require-
ments, which enables it to be easily adapted to graph-processing frameworks such as
Pregel [Malewicz et al. 2010] or GraphLab [Low et al. 2012]. Furthermore, JA-BE-JA can
be applied on fully distributed graphs, where each network node represents a single
graph vertex.

To evaluate JA-BE-JA for edge-cut partitioning, we use multiple datasets of different
characteristics, including a few synthetically generated graphs, some graphs that are
well-known in the graph partitioning community [Walshaw 2012b], and some sampled
graphs from Facebook [Viswanath et al. 2009] and Twitter [Galuba et al. 2010]. We
first investigate the impact of different heuristics on the resulting partitioning of the
input graphs, and then we compare JA-BE-JA to METIS [Karypis and Kumar 1999a], a
well-known centralized solution. We show that, although JA-BE-JA does not have cheap
random access to the graph data, it can work as well as, and sometimes even better
than, a centralized solution. In particular, for large graphs that represent real-world
social network structures, such as Facebook and Twitter, JA-BE-JA outperforms METIS

[Karypis and Kumar 1999a].
For vertex-cut partitioning, we compare our solution withGuerrieri and Montresor

[2014] and show that JA-BE-JA not only guarantees to keep the size of the partitions
balanced, but also produces a better vertex-cut.

In the next section, we define the exact problems that we are targeting, together
with the boundary requirements of the potential applications. Then, in Section 3, we

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.



12:4 F. Rahimian et al.

explain JA-BE-JA in detail, and we evaluate it in Section 4. In Section 5, we study the
related work of graph partitioning. Finally, in Section 6, we conclude the work.

2. PROBLEM STATEMENT

The problem that we address in this article is distributed balanced k-way graph parti-
tioning. In this section, we define two variations of this problem: namely, edge-cut and
vertex-cut partitioning. We also formulate the optimization problem and describe our
assumptions about the system we operate in.

2.1. Balanced Edge-cut Partitioning

Given an undirected graph G = (V, E), where V is the set of vertices and E is the
set of edges, a k-way edge-cut partitioning divides V into k subsets. Intuitively, in
a good partitioning, the number of edges that cross the boundaries of components
is minimized. Balanced (uniform) partitioning refers to the problem of partitioning
a graph into equal-sized components with respect to the number of vertices in each
component. The equal size constraint can be softened by requiring that the partition
sizes differ only by a factor of a small ε.

A k-way edge-cut partitioning can be given with the help of a partition function
π : V → {1, . . . , k} that assigns a color to each vertex. Hence, π (p), or πp for short,
refers to the color of vertex p. Vertices with the same color form a partition. We denote
the set of neighbors of vertex p by Np, and we define Np(c) as the set of neighbors of p
that have color c:

Np(c) = {q ∈ Np : πq = c}. (1)

The number of neighbors of vertex p is denoted by dp = |Np|, and dp(c) = |Np(c)|
is the number of neighbors of p with color c. We define the energy of the system as
the number of edges between vertices with different colors (equivalent to edge-cut).
Accordingly, the energy of a vertex is the number of its neighbors with a different color,
and the energy of the graph is the sum of the energy of the vertices:

E(G, π ) = 1
2

∑
p∈V

(dp − dp(πp)), (2)

where we divide the sum by 2 since the sum counts each edge twice. Now, we can
formulate the balanced optimization problem: Find the optimal partitioning π∗ such
that

π∗ = arg minπ E(G, π )
s.t. |V (c1)| = |V (c2)|,∀ c1, c2 ∈ {1, . . . , k}, (3)

where V (c) is the set of vertices with color c.

2.2. Balanced Vertex-cut Partitioning

Given an undirected graph G = (V, E), where V is the set of vertices and E is the set of
edges, a k-way balanced vertex-cut partitioning divides the set of edges E into k subsets
of equal size. Each partition also has a subset of vertices that hold at least one of the
edges in that partition. However, vertices are not unique across partitions; that is, some
vertices have to be replicated in more than one partition due to the distribution of their
edges across several partitions. A good vertex-cut partitioning strives to minimize the
number of replicated vertices. Figure 3 shows a graph with three different vertex-cut
partitionings. The graph edges are partitioned into two clusters. Two colors, yellow
and red, represent these two partitions. Vertices that have edges of one color only are
also colored accordingly, and the vertices that have to be replicated are cut. A very

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.



A Distributed Algorithm for Large-Scale Graph Partitioning 12:5

Fig. 3. Vertex-cut partitioning into two clusters. The color of each edge/vertex represents the partition it
belongs to. The cut vertices belong to both partitions.

naı̈ve solution is to randomly assign edges to partitions. As shown in Figure 3(a), in
a random assignment, nearly all the vertices have edges of different colors; thus, they
have to be replicated in both partitions. Figure 3(b) illustrates what happens if we use
an edge-cut partitioner and then randomly assign the cut edges to one of the partitions.
As shown, the vertex-cut improves significantly. However, the number of edges in the
partitions is very unbalanced. What we desire is depicted in Figure 3(c), where the
number of replicated vertices is kept as low as possible, while the size of the partitions,
with respect to the number of edges, is balanced.

A k-way balanced vertex-cut partitioning can be given with the help of a partition
function π : E → {1, . . . , k} that assigns a color to each edge. Hence, π (e), or πe for short,
refers to the color of edge e. Edges with the same color form a partition. We denote
the set of edges that are connected (or incident) to vertex p by Ep. Accordingly, Ep(c)
indicates the subset of edges incident with p that have color c:

Ep(c) = {e ∈ Ep : πe = c}. (4)

We refer to |Ep(c)| as the cardinality of color c at vertex p. Then, the energy of a
vertex p, denoted by γ (p, π ), is defined as the number of different colors assigned to
the edges incident with p (i.e., the number of colors with |Ep(c)| greater than zero):

γ (p, π ) =
∑

|Ep(c)|>0

1,∀ c ∈ {1, . . . , k}. (5)

In other words, the energy of a vertex is equivalent to the number of required replicas
for that vertex (i.e., the number of times the vertex has to be cut). The energy of the
graph is then the sum of the energy of all its vertices:

�(G, π ) =
∑
p∈V

γ (p, π ). (6)

Now, we can formulate an optimization problem as follows: Find the optimal parti-
tioning π∗ such that:

π∗ = arg minπ �(G, π )
s.t. |E(c1)| = |E(c2)|,∀ c1, c2 ∈ {1, . . . , k}, (7)

where |E(c)| is the number of edges with color c.

2.3. Data Distribution Model

We assume that the vertices of the graph are processed periodically and asynchronously,
where each vertex only has access to the state of its immediate neighbors and a small set
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12:6 F. Rahimian et al.

of random vertices in the graph. The vertices could be placed either on an independent
host each or processed in separate threads in a distributed framework. This model,
which we refer to as the one-host-one-node model, is appropriate for frameworks like
GraphLab [Low et al. 2012] or Pregel [Malewicz et al. 2010], Google’s distributed
framework for processing very large graphs. It can also be used in peer-to-peer overlays,
where each vertex is an independent computer. In both cases, no shared memory is
required. Vertices communicate only through messages over edges of the graph, and
each message adds to the communication overhead.

The algorithm can take advantage of the case when a computer hosts more than
one graph vertex. We call this the one-host-multiple-nodes model. Here, vertices on the
same host can benefit from a shared memory on that host. For example, if a vertex
exchanges some information with other vertices on the same host, the communication
cost is negligible. However, information exchange across hosts is costly and constitutes
the main body of the communication overhead. This model is interesting for data
centers or cloud computing environments, where each computer can emulate thousands
of vertices at the same time.

3. SOLUTION

We propose JA-BE-JA,1 a distributed heuristic algorithm for the balanced k-way graph
partitioning problem. We use different colors to identify distinct partitions. The colors
are assigned to either vertices or edges for edge-cut and vertex-cut partitioning, re-
spectively. We use the term “color exchange” in both cases, which means the exchange
of colors between vertices for edge-cut partitioning and between edges for vertex-cut
partitioning. However, in both cases, it is always the vertices that act as processing
units and run the algorithm, and edges are only treated as passive elements.

3.1. The Basic Idea

The basic idea is to assign colors uniformly at random and then to apply a local search
to push the configuration toward lower energy states (min-cut).

The local search operator is executed by all the graph vertices in parallel: Each vertex
attempts to change either its own color (in edge-cut partitioning) or the color of one of
the edges that is connected to it (in vertex-cut partitioning) to the most dominant color
in the neighborhood. However, to preserve the size of the partitions, the colors cannot
change independently. Instead, colors can only be swapped. Each vertex iteratively
selects another vertex among either its neighbors or a random sample and investigates
the pair-wise utility of a color exchange. If the color exchange decreases the energy,
then the two vertices proceed with the color exchange. Otherwise, they preserve their
colors.

To implement this idea, JA-BE-JA combines two main components: (i) a sampling
component that enables a vertex to choose other vertices for color exchange and (ii)
a swapping component that indicates if the color swap should happen. The sampling
component is identical in both edge-cut and vertex-cut partitioning, whereas the swap-
ping components are different due to inherent differences in their objective functions.
We explain these two components in the following sections.

Before delving into the details, however, it is important to note that when applying
local search, the key problem is to ensure that the algorithm does not get stuck in a
local optimum. For this purpose, we employ the simulated annealing technique [Van
Laarhoven and Aarts 1987; Talbi 2009], described later. Later, in the evaluation section
(Section 4), we show the impact of this technique on the quality of the final partitioning.

1JA-BE-JA means “swap” in Persian.
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A Distributed Algorithm for Large-Scale Graph Partitioning 12:7

Note, since no color is added to/removed from the graph, the distribution of colors
is preserved during the course of optimization. Hence, if the initial random coloring
of the graph is uniform, we will have balanced partitions at each step. We stress that
this is a heuristic algorithm, so it cannot be proved (or, in fact, expected) that the
globally minimal energy value is achieved. Exact algorithms are not feasible since the
problem is NP-complete [Andreev and Räcke 2004], so the min-cut cannot be computed
in a reasonable time even with a centralized solution and a complete knowledge of
the graph. In Section 4.1.5, however, we compare our results with the best known
partitioning solutions over a number of benchmark problem instances.

3.2. Sampling Component

In both edge-cut partitioning and vertex-cut partitioning, a vertex should first select a
set of candidate vertices for potential color exchanges. We consider three possible ways
of selecting the candidate set:

—Local (L): Every vertex considers its directly connected vertices (neighbors) as can-
didates for color exchange.

—Random (R): Every vertex selects a uniform random sample of the vertices in the
graph. Note that there exist multiple techniques for taking a uniform sample of a
given graph at a low cost [Awan et al. 2006; Dowling and Payberah 2012; Jelasity
et al. 2005; Massoulié et al. 2006; Payberah et al. 2011; Voulgaris et al. 2005].

—Hybrid (H): In this policy, first the immediate neighbor vertices are selected (i.e., the
local policy). If this selection fails to improve the pairwise utility, the vertex is given
another chance for improvement by letting it select vertices from its random sample
(i.e., the random policy).

We show in Section 4.1.2 that the hybrid policy performs better than the other two
in most cases; thus, it is considered as the prime policy in the sampling component.

3.3. Swapping Component: Edge-cut Partitioning

After finding a set of candidates for a color exchange, a vertex selects the best one from
the set as the swap partner. To decide if two vertices should exchange their colors, we
require: (i) a function to measure the pairwise utility of a color exchange and (ii) a
policy for escaping local optima. The utility function should be such that it reduces the
energy of the graph; thus, it is different for edge-cut and vertex-cut partitioning. In
both cases, however, the vertex that maximizes the utility function is selected from the
candidate set.

In order to minimize the edge-cut of the partitioning, we try to maximize dp(πp) for
all vertices p in the graph, which only requires local information at each vertex. Two
vertices p and q with colors πp and πq, respectively, exchange their colors only if this
exchange decreases their energy (increases the number of neighbors with a similar
color to that of the vertex):

dp(πq)α + dq(πp)α > dp(πp)α + dq(πq)α, (8)

where α is a parameter of the energy function, which takes on real values greater than
or equal to 1. If α = 1, a color exchange is accepted if it increases the total number
of edges with the same color at two ends. For example, color exchange for vertices p
and q in Figure 4(a) is accepted because the vertices change from a state with 1 and 0
neighbors of a similar color to 1 and 3 such neighbors, respectively. However, vertices u
and v in Figure 4(b), each in a state with 2 neighbors of a similar color, do not exchange
their colors if α = 1, because 1 + 3 �> 2 + 2. However, if α > 1, then vertices u and v will
exchange their colors. Although this exchange does not directly reduce the total size of
the edge-cut of the graph, it increases the probability of future color exchanges for the
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Fig. 4. Examples of two potential color exchanges.

two yellow vertices currently in the neighborhood of vertex v. In Section 4, we evaluate
the effect of the parameter α. Based on this relation, we can define the utility of the
swap as:

U = [dp(πq)α + dq(πp)α] − [dp(πp)α + dq(πq)α]. (9)

The swap will take place if the utility is greater than zero. In Section 4.1.3, we discuss
the appropriate value for α.

To avoid becoming stuck in a local optimum, we use the well-known simulated anneal-
ing technique [Van Laarhoven and Aarts 1987; Talbi 2009]. We introduce a temperature
(T ∈ [1, T0]), which starts at T0 and is decreased over time, similar to the cooling pro-
cess in Van Laarhoven and Aarts [1987] and Talbi [2009]. The updated utility function
becomes:

U = [dp(πq)α + dq(πp)α] × Tr − [dp(πp)α + dq(πq)α]. (10)

As a result, in the beginning, we might move in a direction that degrades the energy
function (i.e., vertices exchange their color even if the edge-cut is increased). Over
time, however, we take more conservative steps and do not allow those exchanges that
result in a higher edge-cut. The two parameters of the simulated annealing process
are (i) T0, the initial temperature, which is greater than or equal to 1, and (ii) δ,
which determines the speed of the cooling process. The temperature in round r is
calculated as Tr = max{1, Tr−1 − δ}. When the temperature reaches the lower bound
1, it is not decreased further. From then on, the decision procedure falls back on using
Equation (8). Algorithms 1, 2, and 3 show the edge-cut partitioning process.

3.4. Swapping Component: Vertex-cut Partitioning

The swapping components in vertex-cut partitioning and edge-cut partitioning are
similar, but their difference is in the utility function calculation. The main idea of this
heuristic is to check whether exchanging the color of two edges decreases the energy of
their incident vertices. If it does, the two edges swap their colors; otherwise, they keep
them.

To every edge e (with two endpoints p and q) we assign a value υ, with respect to
color c, that indicates the relative number of neighboring edges of e with color c. That
is:

υ(e, c) =
{ |Ep(c)|−1

|Ep| + |Eq(c)|−1
|Eq| i f c = πe

|Ep(c)|
|Ep| + |Eq(c)|

|Eq| otherwise.
(11)

Note that in the first case, Ep(c) and Eq(c) include edge e, and that is why we need
to decrement them by 1.

First, a vertex selects one of its edges for color exchange. A naı̈ve policy for edge
selection is random selection, but, as explained in Rahimian et al. [2014], this policy
will not lead our local search in the right direction. Therefore, we consider a more
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ALGORITHM 1: Edge/Vertex Cut
procedure cut(graph, policy)

// policy identifies the partitioning algorithm, i.g., edge-cut or vertex-cut;
bestPartner ← getBestPartner(self.getNeighbours(), policy, Tr);
if (bestPartner = null) then

bestPartner ← getBestPartner(graph.getRandomV ertices(), policy, Tr);

if (bestPartner �= null) then
if (policy = EdgeCut) then

swapV ertexColor(self, bestPartner);
else

swapEdgeColor(self, bestPartner);

Tr ← Tr − δ;
if (Tr < 1) then

Tr ← 1;

ALGORITHM 2: Select Best Partner
procedure getBestPartner(candidates, policy, Tr)

highestUtility ← 0;
bestPartner ← null;
forall the (partner ∈ candidates) do

if (policy = EdgeCut) then
utility ← swapV ertexUtility(self, partner, Tr);

else
utility ← swapEdgeUtility(self, partner, Tr);

if ((utility > 0) ∧ (utility > higestUtility)) then
bestPartner ← partner;
highestUtility ← utility;

return bestPartner;

ALGORITHM 3: Calculate Vertex Utility
procedure swapV ertexUtility(vertex1, vertex2, Tr)

c1 ← vertex1.getColor();
c2 ← vertex2.getColor();
u1c1 ← getV ertexV alue(vertex1, c1);
u2c2 ← getV ertexV alue(vertex2, c2);
u1c2 ← getV ertexV alue(vertex1, c2);
u2c1 ← getV ertexV alue(vertex2, c1);
return ((u1c2α + u2c1α) × Tr) − (u1c1α + u2c2α);

effective policy (i.e., greedy policy for edge selection). With this policy, a vertex selects
one of its edges (e.g., e) that has a color with the minimum cardinality:

e ∈ Ep(c∗), c∗ = arg min
c

|Ep(c)|. (12)

Next, the objective is to maximize the overall value of edges during the color exchange
process. More precisely, vertex p exchanges the color of its edge e with the color of
another edge e′ owned by node p′, if and only if:

υ(e, c′) + υ(e′, c) > υ(e, c) + υ(e′, c′), (13)
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where c = πe and c′ = π ′
e. Accordingly, we can define the utility function as:

U = [υ(e, c′) + υ(e′, c)] − [υ(e, c) + υ(e′, c′)]. (14)

Similar to edge-cut partitioning, we use the simulated annealing technique [Talbi
2009] to prevent getting stuck in a local optimum. Therefore, as shown in Algorithm 4
the updated utility function becomes:

U = [υ(e, c′) + υ(e′, c)] × Tr − [υ(e, c) + υ(e′, c′)]. (15)

ALGORITHM 4: Calculate Edge Utility
procedure swapEdgeUtility(vertex1, vertex2, Tr)

c1 ← vertex1.getColorWithMinCardinality();
c2 ← vertex2.getColorWithMinCardinality();
edg1 ← vertex1.getEdges(c1).getOneRandom();
edg2 ← vertex2.getEdges(c2).getOneRandom();
u1c1 ← getEdgeV alue(edge1.src, edge1.dest, c1);
u2c2 ← getEdgeV alue(edge2.src, edge2.dest, c2);
u1c2 ← getEdgeV alue(edge1.src, edge1.dest, c2);
u2c1 ← getEdgeV alue(edge2.src, edge2.dest, c1);
return ((u1c2 + u2c1) × Tr) − (u1c1 + u2c2);

3.5. JA-BE-JA

Algorithm 1 presents the core of JA-BE-JA, which is run periodically by all vertices of
a graph. As it shows, we use the hybrid heuristic for vertex selection, which first tries
the local policy, and, if it fails, it follows the random policy. Algorithms 3 and 4 show
how we calculate the two sides of Equations (10) and (15) for edge-cut and vertex-cut
partitioning, respectively. Also, the current temperature, Tr, biases the comparison
toward selecting new states (in the initial rounds).

Note that the actual swapping operation is implemented as an optimistic transaction,
the details of which are not included in the algorithm listing to avoid distracting from
the core algorithm. The actual swap is done after the two vertices perform a handshake
and agree on the swap. This is necessary because the deciding vertex might have
outdated information about the partner vertex. During the handshake, the initiating
vertex sends a swap request to the partner vertex, along with all the information
that the partner vertex needs to verify the swap utility. For example, in case of edge-
cut partitioning, this information includes the current color (πp), the partner’s color
(πpartner), the number of neighbors with the same color (dp(πp)), and the number of
neighbors with the color of the partner vertex (dp(πpartner)). If the verification succeeds,
the partner vertex replies with an acknowledgment (ACK) message, and the swap
takes place. Otherwise, a negative acknowledgment message (NACK) is sent, and the
existing color of the two vertices or edges will be preserved. These sample and swap
processes are periodically repeated by all the vertices, in parallel, and, when no more
swaps take place in the graph, the algorithm has converged.

We also use a multistart search [Talbi 2009] by running the algorithm many times,
starting from different initial states. Note that this technique is applied in a distributed
way. More precisely, after each run, vertices use a gossip-based aggregation method
[Jelasity et al. 2005] to calculate the edge-cut (vertex-cut) in the graph. If the new
edge-cut (vertex-cut) is smaller than the previous one, they update the best solution
found so far by storing the new edge-cut (vertex-cut) value together with the current
local color.
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In the one-host-multiple-nodes model, the only change required is to give preference
to local host swaps when selecting the best partner (i.e., in Algorithm 2). That is, if
there are several vertices as potential partners for a swap, the vertex selects the one
that is located on the local host, if there is such a candidate. Note that in this model
not each and every vertex is required to maintain a random view for itself. Instead, the
host can maintain a large enough sample of the graph to be used as a source of samples
for all hosted vertices. In Section 4.1.4, we study the tradeoff between communication
overhead and the edge-cut with and without considering the locality.

3.6. Generalizations of JA-BE-JA

So far, we have discussed the case when the graph edges are not weighted and the
partition sizes are equal. However, JA-BE-JA is not limited to these cases. In this sec-
tion, we briefly describe how it can deal with weighted graphs and produce arbitrary
predefined partition sizes.

Weighted graphs. In real-world applications, vertices and/or edges are often weighted.
For example, in a graph database, some operations are performed more frequently;
thus, some edges are accessed more often [Dominguez-Sal et al. 2010]. In order to
prioritize such edges for edge-cut partitioning of a graph, we change the definition of
dp, such that, instead of just counting the number of neighboring vertices with the
same color, we sum the weights of these edges:

dp(c) =
∑

q∈Np(c)

w(p, q), (16)

where w(p, q) is the weight of the edge between p and q.
A similar approach can be taken in order to enable vertex-cut partitioning for graphs

with weighted vertices.

Arbitrary partition sizes. Assume we want to split the data over two machines that
are not equally powerful. If the first machine has twice as many resources as the second
one, we need a 2-way partitioning with one component being twice as large as the other.
To do that, we can initialize the graph partitioning with a biased distribution of colors.
For example, for edge-cut partitioning, if vertices initially choose randomly between
two partitions c1 and c2, such that c1 is twice as likely to be chosen, then the final par-
titioning will have a partition c1, which is twice as big. This is true for any distribution
of interest because JA-BE-JA is guaranteed to preserve the initial distribution of colors.
Likewise, for vertex-cut partitioning, any given distribution for the edge colors can be
used for initialization, and from then on this distribution will remain an invariant.

4. EXPERIMENTAL EVALUATION

We have implemented JA-BE-JA on PEERSIM [Montresor and Jelasity 2009], a discrete
event simulator for building P2P protocols. We used multiple graphs of different na-
tures and sizes for evaluating JA-BE-JA. In particular, we considered four types of
graphs: (i) two synthetically generated graphs, (ii) several graphs from the Walshaw
archive [Walshaw 2012b], (iii) sampled graphs from two well-known social networks:
Twitter [Galuba et al. 2010] and Facebook [Viswanath et al. 2009], and (iv) two collab-
oration networks from the Stanford snap dataset [Leskovec 2011]. These graphs and
some of their properties are listed in Table I.

Synthetic Graphs. We generated two different graphs synthetically. The first one is
based on the Watts-Strogatz model [Watts and Strogatz 1998], with 1,000 vertices and
an average degree of 8 per vertex. First, a lattice is constructed and then some edges are
rewired with probability 0.02. We refer to this graph as Synth-WS. The second graph,
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Table I. Datasets

Dataset |V| |E| Type Power-law Reference

Synth-WS 1,000 4,147 Synth. No -
Synth-SF 1,000 7,936 Synth. No -
add20 2,395 7,462 Walshaw No [Walshaw 2012b]
data 2,851 15,093 Walshaw No [Walshaw 2012b]
3elt 4,720 13,722 Walshaw No [Walshaw 2012b]
4elt 15,606 45,878 Walshaw No [Walshaw 2012b]
vibrobox 12,328 165,250 Walshaw No [Walshaw 2012b]
Twitter 2,731 164,629 Social Yes [Galuba et al. 2010]
Facebook 63,731 817,090 Social Yes [Viswanath et˜al. 2009]
Astroph 17,903 196,972 Collaboration Yes [Leskovec 2011]
Email-Enron 36,692 367,662 Collaboration Yes [Leskovec 2011]

Synth-SF, is an implementation of the Barabási-Albert model [Albert and Barabási
2002] of growing scale-free networks. This graph also includes 1,000 vertices with an
average degree of 16. Both graphs are undirected, and there are no parallel edges
either.

The Walshaw Archive. The Walshaw archive [Walshaw 2012b] consists of the best
partitioning found to date for a set of graphs and reports the partitioning algorithms
that achieved those best results. This archive, which has been active since 2000, in-
cludes the results from most of the major graph partitioning software packages, and is
kept updated regularly by receiving new results from the researchers in this field. For
our experiments, we chose graphs add20, data, 3elt, 4elt, and vibrobox, which are the
small and medium-sized graphs in the archive, listed in Table I.

The Social Network Graphs. Since social network graphs are one of the main tar-
gets of our partitioning algorithm, we investigate the performance of JA-BE-JA on two
sampled datasets, which represent the social network graphs of Twitter and Facebook.
We sampled our Twitter graph from the follower network of 2.4 million Twitter users
[Galuba et al. 2010]. There are several known approaches for producing an unbiased
sample of a very large social network, such that the sample has similar graph prop-
erties to those of the original graph. We used an approach discussed in Kurant et al.
[2010] sampling nearly 10,000 vertices by performing multiple Breadth-First Searches
(BFS). We also used a sample graph of Facebook, which is made available by Viswanath
et al. [2009]. These data were collected by crawling the New Orleans regional network
during December 29, 2008 and January 3, 2009, and include those users who had a
publicly accessible profile in the network. The data, however, are anonymized.

The Collaboration Network Graphs. Two graphs among our input dataset fall into
this category: Astroph and Email-Enron. We selected these two graphs only for the
sake of comparison with the state-of-the-art work on vertex-cut partitioning [Guerrieri
and Montresor 2014]. Therefore, the result for edge-cut partitioning of these graphs is
not reported.

We organize the rest of this section into two main parts, one for edge-cut partitioning
and the other for vertex-cut partitioning.

4.1. Edge-cut Partitioning

First, we investigate the impact of different heuristics and parameters on different
types of graphs. Then, we conduct an extensive experimental evaluation to compare
the performance of JA-BE-JA to (i) METIS [Karypis and Kumar 1999a], a well-known
efficient centralized solution, and (ii) to the best known available results from the
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Walshaw benchmark [Walshaw 2012b] for several graphs. Unless stated otherwise,
we compute a 4-way partitioning of the input graph with initial temperature T0 = 2,
and the temperature is reduced by δ = 0.003 in each step until it reaches value 1.
However, the algorithm will continue to run until there are no further changes/swaps.
The parameter α is set to 2. In Section 4.1.3, we show how we came to select these
values for these parameters.

4.1.1. Metrics. Although the most important metric for edge-cut graph partitioning is
the size of the edge-cut (or energy), a number of studies [Hendrickson 1998] show that
this metric alone is not enough to measure the partitioning quality. Several metrics are,
therefore, defined and used in the literature [Meyerhenke et al. 2008, 2009], among
which we selected the following in our evaluations:

—edge-cut: The number of interpartition edges, as given in Formula 2 (i.e., E(G, π )).
—swaps: The number of swaps that take place between different hosts during runtime

(i.e., swaps between graph vertices stored on the same host are not counted).
—data migration: The number of vertices that need to be migrated from their initial

partition to their final partition.

Whereas the size of the edge-cut is a quality metric for partitioning, the number of
swaps defines the cost of the algorithm. Moreover, the data migration metric makes
sense only in the one-host-multiple-nodes model, where some graph vertices have to
migrate from one physical machine to another after finding the final partitioning. If
the graph vertices that are initially located at a given host get the same initial color,
then this metric is given by the number of vertices that end up with a different color
by the time the algorithm has converged.

In all the experiments that follow, we executed the algorithm 10 times for each graph.
The only exception is the Facebook graph, for which we only ran the experiments three
times. The value reported for the edge-cut in all the tables and plots is the minimum
edge-cut among different runs. For the number of swaps and migrations, we report
those associated with the reported (minimum) edge-cut. Note that, in all cases, we could
also report the average and the standard deviation or variance of the edge-cut across
different runs. But we observed a similar trend for the average and minimum when
it came to tuning the parameters and drawing conclusions. Therefore, to be consistent
with the related work, and at the same time not overwhelm readers with numbers, we
report the minimum edge-cut only. For the sake of completion however, we report the
average edge-cut and the standard deviation of different runs in Section 4.1.5, where
we compare JA-BE-JA with the state-of-the-art.

4.1.2. The Impact of the Sampling Policies. In this section, we study the effect of different
sampling heuristics on the edge-cut. These heuristics were introduced in Section 3.2
and are denoted by L, R, and H. Here, we evaluate the one-node-one-host model, and, to
take uniform random samples of the graph, we applied Newscast [Jelasity et al. 2005;
Tölgyesi and Jelasity 2009] in our implementation. As shown in Table II, all heuristics
significantly reduce the initial edge-cut that belongs to a random partitioning. Even
with heuristic L, which only requires the information about direct neighbors of each
vertex, the edge-cut is reduced to 30% of the initial number for the Facebook graph.
The random selection policy (R) works even better than local (L) for all the graphs
because it is less likely to get stuck in a local optimum. The best result for most graphs,
however, is achieved with the combination of L and R: the hybrid heuristic (H).

4.1.3. The Impact of the Swapping Policies. In these experiments, we study the effect of the
parameters that define the swapping policies introduced in Section 3.3. We investigate
the impact of the parameters on the final edge-cut, as well as on the number of swaps.
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Table II. The Minimum Edge-Cut Achieved with Different Sampling Heuristics.
α = 2 and Simulated Annealing Is Used

Graph Initial Local Random Hybrid

Synth-WS 3,127 1,051 600 221
Synth-SF 5,934 4,571 4,151 4,169
add20 5,601 3,241 1,446 1,206
data 11,326 3,975 1,583 775
3elt 10,315 4,292 1,815 390
4elt 34,418 14,304 6,315 1,424
vibrobox 123,931 42,914 22,865 23,174
Twitter 123,683 45,568 41,079 41,040
Facebook 612,585 181,661 119,551 117,844

Table III. The Minimum Edge-Cut Achieved with Different Values
for α. Hybrid Sampling and Simulated Annealing Are Used

Graph Initial α = 1 α = 2 α = 3

Synth-WS 3,127 265 221 290
Synth-SF 5,934 4,190 4,169 4,215
add20 5,601 1,206 1,206 1,420
data 11,326 618 775 1,241
3elt 10,315 601 390 1,106
4elt 34,418 1,473 1,424 2,704
vibrobox 123,931 23,802 23,174 25,602
Twitter 123,683 40,775 41,040 41,247
Facebook 612,585 124,328 117,844 133,920

Table III contains the edge-cut values achieved with different values of α, a parameter
of the swapping condition in Equation (8). The setting α = 2 gives the best result for
most of the graphs. Previously, we explained that it is good to use an α greater than
1 because it encourages swaps that do not change the edge-cut, but only change the
distribution of color around the two negotiating vertices in favor of vertices with a
higher degree. For example, instead of having two vertices with 3 neighbors of similar
color each, we prefer to have one vertex with 5 similar neighbors and another one with
1 similar neighbor. The sum will still be the same (i.e., 6). However, if α is set to a high
value, then it can also encourage swaps that decrease this sum, thus increasing the
edge-cut. For example, with α = 3, we could end up in a state where the two vertices
have 4 and 1 similar neighbors, respectively; because 43 +13 > 33 +33, while the initial
state with 3 and 3 similar neighbors was a better state. The higher α gets, the more
likely such wrong swaps will take place. This is confirmed in the experiments that we
conducted. As shown in Table III, even with α = 3, vertices seem to overestimate the
value of some swaps and end up in an inferior state. Note that this effect could happen
even in case of α = 2, but the number of wrong decision will be far lower than the good
decisions. Therefore, we use α = 2 in the rest of our experiments.

Table IV lists the edge-cut with and without Simulated Annealing (SA). In the simu-
lations without SA, we set T0 = 1, which is the lowest allowed temperature in our case
(see Equation (10)). Although the improvements due to SA might be minor for some
graphs, for other graphs with various local optima, SA can lead to a much smaller
edge-cut. We also ran several experiments to investigate the effect of T0 and observed
that T0 = 2 gives the best results in most cases.

The other parameter of the simulated annealing technique is δ, the speed of the
cooling process. We investigate the impact of δ on the edge-cut and on the number of
swaps. Figure 5 shows the results as a function of different values for δ. The higher δ
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Table IV. The Minimum Edge-Cut Achieved with and without Simulated Annealing, While α = 2
and Hybrid Sampling Is Used

Graph Initial Without Simulated Annealing With Simulated Annealing

Synth-WS 3,127 503 221
Synth-SF 5,934 4,258 4,169
add20 5,601 1,600 1,206
data 11,326 1,375 775
3elt 10,315 1,635 390
4elt 34,418 6,240 1,424
vibrobox 123,931 26,870 23,174
Twitter 123,683 41,087 41,040
Facebook 612,585 152,670 117,844

Fig. 5. The number of swaps and edge-cut over δ.

is, the higher the edge-cut (Y1-axis) and the smaller the number of swaps (Y2-axis). In
other words, δ represents a tradeoff between the number of swaps and the quality of
the partitioning (edge-cut). Note that a higher number of swaps means both a longer
convergence time and more communication overhead. For example, for δ = 0.003, it
takes around 334 rounds for the temperature to decrease from 2 to 1, and, in just very
few rounds after reaching the temperature of 1, the algorithm converges. Interestingly,
the social network graphs are very robust to δ in terms of the edge-cut value, so, in
the case of highly clustered graphs, the best choice seems to be a relatively fast cooling
schedule.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.



12:16 F. Rahimian et al.

Fig. 6. Evolution of edge-cut and the number of swaps over time.

4.1.4. Locality. Here, we investigate the evolution of the edge-cut, the number of swaps,
and the number of migrations over time, assuming the one-host-multiple-nodes model.
Recall that swaps between vertices within the same host are not counted. We assume
there are four hosts in the systems, where each host gets a random subset of vertices
initially. They run the algorithm to find a better partitioning by repeating the sample
and swap steps periodically until no more swaps occur (convergence). As shown in
Figure 6, in both models, the algorithm converges to the final partitioning in round
350; that is, shortly after the temperature reaches 1. We also observe that the conver-
gence time is mainly dependent on the parameters of the SA process, and so it can be
controlled by the initial temperature T0 and the cooling schedule parameter δ.

Although (as we have seen) we can achieve a much lower number of swaps in Twitter
and Facebook graphs with higher values of δ without sacrificing the solution quality
(Figures 5(c) and 5(d)), we performed these experiments with the same setting of
δ = 0.003 for all the graphs. As shown in Figure 6(b), locally biased swapping results
in relatively more interhost swaps over the 3elt graph. Fortunately, in the rest of
the graphs—that include the practically interesting social network samples as well—
we can see the opposite (and more favorable) trend; namely, that JA-BE-JA achieves
the same edge-cut with much fewer interhost swaps. We speculate that this is due
to the fact that, in the latter group of graphs, there are various partitionings of the
graph with a similar edge-cut value; thus, local swaps will be more likely to be good
enough.

When the goal is to rearrange the graph, data are not actually moved before the
algorithm has converged to the final partitioning. Instead, on a given host, all vertices
are initialized with the same color. During runtime, only the color labels are exchanged.
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Table V. The Number and Fraction of Vertices
That Need to Migrate

Graph |V | |mig| Fraction

Synth-WS 1,000 720 72%
add20 2,395 1,740 72.6%
3elt 4,720 3,436 72.7%
Twitter 2,731 2,000 73%
Facebook 63,731 47,555 74.6%

Table VI. The Average and Minimum Edge-Cut Achieved by JA-BE-JA vs. METIS vs. the
Best Known Edge-Cut

JA-BE-JA JA-BE-JA

Graph AVG (STD) MIN METIS Best Known Edge-Cut

Synth-WS 264 (27) 221 210 -
Synth-SF 4,183 (13) 4,169 4,279 -
add20 1,376(114) 1,206 1,276 1,159 [Chardaire et al. 2007]
data 974 (84) 775 452 382 [Benlic and Hao 2011b]
3elt 516 (87) 390 224 201 [Soper et al. 2004]
4elt 1,690 (133) 1,424 374 326 [Walshaw 2012a]
vibrobox 24,501 (767) 23,174 22,526 19,098 [Benlic and Hao 2011b]
Twitter 41,251 (186) 41,040 65,737 -
Facebook 125,395 (7,124) 117,844 117,996 -

The color of a vertex may change several times before convergence. When the algorithm
converges, each data item (vertex) is migrated from its initial partition to its final
partition indicated by its color.

Note that migration could be optimized given the final partitioning, but we simply
assume that vertices with a color different from the original color will migrate. Table V
shows the number of data items that need to be migrated after the convergence of
the algorithm. As expected, this number constitutes nearly 75% of the vertices for a
4-way partitioning. This is because each vertex initially selects one out of four partitions
uniformly at random, and the probability that it is not moved to a different partition
is only 25%. Equivalently, 25% of the vertices stay in their initial partition and the
remaining 75% have to migrate.

4.1.5. Comparison with the State-of-the-Art. In this section, we compare JA-BE-JA to METIS

[Karypis and Kumar 1999a] on all the input graphs. We also compare these results
to the best known solutions for the graphs from the Walshaw benchmark [Walshaw
2012b]. Table VI shows the edge-cut produced for the 4-way partitioning of the input
graphs. In this table, we also reported the average edge-cut achieved by JA-BE-JA, as
well as the standard deviation across multiple runs. However, to be fair, we always
compare the minimum edge-cut achieved by any of the solutions against each other. As
shown, for some graphs, METIS produces better results, and, for some others, JA-BE-JA

works better. However, the advantage of JA-BE-JA is that it does not require all the
graph data at once; therefore, it is more practical when processing very large graphs.

Next, we investigate the performance of the algorithms, in terms of edge-cut, when
the number of the required partitions grows. Figure 7 shows the resulting edge-cut of
JA-BE-JA versus METIS for 2–64 partitions. Naturally, when there are more partitions in
the graph, the edge-cut will also grow. However, as shown in most of the graphs (except
for 3elt), JA-BE-JA finds a better partitioning compared to METIS when the number
of partitions grows. In particular, JA-BE-JA outperforms METIS in the social network
graphs. For example, as shown in Figure 7(d), the edge-cut in METIS is nearly 20K
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Fig. 7. The minimum edge-cut achieved with JA-BE-JA vs. METIS for various number of partitions (k).

more than JA-BE-JA. Note that, unlike METIS, JA-BE-JA does not make use of any global
information or operation over the entire graph.

4.2. Vertex-Cut Partitioning

In this section, we first introduce the metrics that we used for evaluating our solution.
Then, we study the impact of our simulated annealing parameters on the partitioning
quality. Next, we show how different policies, introduced in Section 3.4, perform. We
also measure the performance of these policies in scale and compare them to two state-
of-the-art solutions.

4.2.1. Metrics. We measure the following metrics to evaluate the quality of the vertex-
cut partitioning:

—Vertex-cut: This metric counts the number of times that graph vertices have to be
cut. That is, a vertex with one cut has replicas in two partitions, and a vertex with
two cuts is replicated over three partitions. This is an important metric when we
want to put the partitioned graph in use (e.g., let’s assume we want to compute
the Page Rank algorithm on an already partitioned graph). If a graph vertex is
replicated over several partitions, every computation that involves a modification to
that vertex should be propagated to all the other replicas of that vertex for the sake
of consistency. Therefore, vertex-cut directly affects the communication cost imposed
by the partitioned graph.

—Normalized vertex-cut: This metric calculates the vertex-cut of the final partitioning
relative to the random partitioning; thus, it shows to what extent the algorithm can
reduce the vertex-cut.
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Fig. 8. Tuning simulated annealing parameters on data graph from Walshaw archive (K = 2).

—Standard deviation of partition sizes: This metric measures the Standard Deviation
(STD) of the normalized size of the partitions. More precisely, we first measure the
size of the partitions in terms of the number of edges relative to the average (expected)
size. In a perfectly balanced partitioning, the normalized size should be 1. We then
calculate how much the normalized size deviates from 1.

Each experiment is repeated 3 times per graph, and, for the sake of consistency, we
report the values associated with the minimum vertex-cut achieved among the 3 runs.
Note that the trends and conclusions would remain the same had we used the average
values instead.

4.2.2. Tuning the Parameters. We conducted several experiments to tune the two param-
eters of the simulated annealing, namely T0 and δ. For these experiments, we selected
the Data graph (Table I) and k = 2. As shown in Figure 8(a), the vertex-cut decreases
when T0 increases. However, Figure 8(b) illustrates that this improvement is achieved
in a higher number of rounds; that is, a bigger T0 delays the convergence time. Simi-
larly, a smaller δ results in a better vertex-cut but at the cost of more rounds. In other
words, T0 and δ are parameters of a tradeoff between vertex-cut and the convergence
time and can be tuned based on the priorities of the applications (see Section 4.1.3 for
a similar argument). Moreover, we found that for a larger k, it is better to choose a
smaller δ because when the number of partitions increases, the solution space expands
and it is more likely for the algorithm to get stuck in local optima. Unless otherwise
mentioned, in the rest of our experiments, we use δ = 0.0005 for k = 32 and k = 64 and
δ = 0.001 for other values of k.

4.2.3. Performance. Figure 9(a) depicts how the vertex-cut changes for various numbers
of partitions. To better understand this result, we also report the vertex-cut of JA-BE-JA

relative to that of a random partitioning in Figure 9(b). As shown, JA-BE-JA reduces the
vertex-cut to nearly 10–15% for Data and 4elt graphs and to 20–30% for our power-
law graphs. Note that, in general, the vertex-cut is expected to increase with a higher
number of partitions. If we only had one partition, there would be no vertex-cut. As
soon as we have more than one partition, the vertices on the borders of those partitions
have to be cut. The more the partitions, the bigger the bordering region gets, thus, the
more vertices are cut. In the extreme case, where every edge has a distinct color, all the
vertices have to be cut over and over (depending on their degree), and no improvement
would be possible compared to a random partitioning.

4.2.4. Comparisons to the State of the Art. In this section, to distinguish JA-BE-JA for edge-
cut partitioning and vertex-cut partitioning, we call the former JA-BE-JA-EC and the
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Fig. 9. The improvements for different number of partitions.

Fig. 10. Comparisons (k = 20).

latter JA-BE-JA-VC. We compare JA-BE-JA-VC to JA-BE-JA-EC and also to a vertex-cut
partitioner by Guerrieri and Montresor [2014] that employs one of the two policies,
namely D-fep or D-fep Variant. We also show how it would be to employ an edge-cut
partitioner (e.g., JA-BE-JA-EC) to partition the graph and then assign the cut edges
randomly to one of the to which their endpoints belong. This is similar to the example
in Figure 3(b). This experiment is performed on Astroph and Email-Enron graphs
with k = 20. To make the comparisons easier, instead of reporting the raw numbers
for vertex-cut, we report the normalized vertex-cut; that is, the vertex-cut relative to
that of a random partitioning. As shown in Figure 10(a), JA-BE-JA-EC produces the
minimum vertex-cut. However, Figure 10(b) shows that the partition sizes are very
unbalanced. Note that JA-BE-JA-EC balances the number of vertices across partitions,
and here we are measuring the partition size in terms of the number of edges. That
is why JA-BE-JA-EC deviates from balanced partition sizes. The vertex-cuts of D-fep
and its variant are more than JA-BE-JA-EC, but their partition sizes are much more
balanced. JA-BE-JA-VC has a better vertex cut than D-fep and its variant, whereas the
partition sizes are nearly equal.

As explained in Section 4.2.2, the convergence time of JA-BE-JA-VC is independent of
the graph size and is mainly affected by the parameters of the SA process. Although this
is true for JA-BE-JA-VC, Guerrieri and Montresor [2014] shows that both D-fep and its
variant converge in only very few rounds and produce very good vertex-cuts for graphs
Astroph and Email-Enron. However, as depicted in Figure 10(b), these algorithms do
not maintain the balance of the partition sizes. In fact, without proper coordination,
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the standard deviation of the partition size distribution could grow to prohibitively
large levels. JA-BE-JA-VC, however, maintains the initial distribution of edge colors and
can even be used to produce partitions of any desired size distribution with a better
vertex-cut. This comes, however, at the cost of a longer running time.

5. RELATED WORK

In this section we study some of the existing work on both edge-cut and vertex-cut
partitioning.

5.1. Edge-Cut Partitioning

A significant number of algorithms exist for edge-cut partitioning [Baños et al. 2003;
Bui and Moon 1996; Hendrickson and Leland 1995; Karypis and Kumar 1998, 1999b;
Walshaw and Cross 2000; Sanders and Schulz 2011]. These algorithms can be classified
into two main categories: (i) centralized algorithms, which assume cheap random access
to the entire graph, and (ii) distributed algorithms.

A common approach in the centralized edge-cut partitioning is to use Multilevel
Graph Partitioning (MGP) [Hendrickson and Leland 1995]. METIS [Karypis and Ku-
mar 1998] is a well-known algorithm based on MGP that combines several heuristics
during its coarsening, partitioning, and uncoarsening phases to improve the cut size.
KAFFPA [Sanders and Schulz 2011] is another MGP algorithm that uses local improve-
ment algorithms based on flows and localized searches. There exist also other works
that combined different meta-heuristics with MPG; for example, Soper et al. [2004]
and Chardaire et al. [2007] used a Genetic Algorithm (GA) with MPG, and Benlic and
Hao [2011a] utilized Tabu search.

Parallelization is a technique used by some systems to speed up the partitioning
process. For example, PARMETIS [Karypis and Kumar 1999b] is the parallel version
of METIS, KAFFPAE [Sanders and Schulz 2012] is a parallelized version of its ancestor
KAFFPA [Sanders and Schulz 2011], and [Talbi and Bessiere 1991] is a parallel graph
partitioning technique based on parallel GA [Luque and Alba 2011].

Although these algorithms are fast and produce good min-cuts, they require access to
the entire graph at all times, which is not feasible for large graphs. JA-BE-JA [Rahimian
et al. 2013] is a recent algorithm that is fully distributed and uses local search and
SA techniques [Talbi 2009] for graph partitioning. In this algorithm, each vertex is
processed independently, and only the direct neighbors of the vertex and a small sub-
set of random vertices in the graph need to be known locally. DIDIC [Gehweiler and
Meyerhenke 2010] and CDC [Ramaswamy et al. 2005] are two other distributed algo-
rithms for graph partitioning that eliminate global operations for assigning vertices to
partitions. However, DIDIC does not guarantee the production of equal-size partitions.
Moreover, while it can enforce an upper bound on the number of created partitions,
it does not have control over the exact number of partitions [Averbuch and Neumann
2013].

5.2. Vertex-Cut Partitioning

Although there exist numerous solutions for edge-cut partitioning, very little effort has
been made for vertex-cut partitioning. SBV-Cut [Kim and Candan 2012] is one of the
few algorithms for vertex-cut partitioning. First, a set of balanced vertices is identified
for bisecting a directed graph. Then, the graph is further partitioned by a recursive
application of structurally balanced cuts to obtain a hierarchical partitioning of the
graph.

PowerGraph [Gonzalez et al. 2012] is a distributed graph processing framework that
uses vertex-cuts to evenly assign edges of a graph to multiple machines, such that
the number of machines spanned by each vertex is small. PowerGraph reduces the
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communication overhead and imposes a balanced computation load on the machines.
GraphX [Xin et al. 2013] is another graph processing system on Spark [Zaharia et al.
2010, 2012] that uses a vertex-cut partitioning.

DFEP [Guerrieri and Montresor 2014] is the most recent distributed vertex-cut
partitioning algorithm. It works based on a market model, in which the partitions are
buyers of vertices with their funding. Initially, all partitions are given the same amount
of funding. Then, in each round, a partition p tries to buy edges that are neighbors
of the already taken edges by p, and an edge will be sold to the highest offer. There
exists a coordinator in the system that monitors the size of each partition and sends
additional units of funding to the partitions, inversely proportional to the size of each
partition.

6. CONCLUSION

We provided an algorithm that, to the best of our knowledge, is the first distributed
algorithm for balanced graph partitioning that does not require any global knowledge.
To compute the partitioning, nodes of the graph require only some local information
and perform only local operations. Therefore, the entire graph does not need to be
loaded into memory, and the algorithm can run in parallel on as many computers as
available. We showed that our algorithm can achieve a quality partitioning as good as
a centralized algorithm, and it reduces the edge-cut/vertex-cut by 70–80% compared to
random partitioning. This enables running large-scale graph algorithms on multiple
machines in parallel, with a relatively low communication overhead.
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Konstantin Andreev and Harald Räcke. 2004. Balanced graph partitioning. In Proceedings of ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA’04). ACM, 120–124.

Alex Averbuch and Martin Neumann. 2013. Partitioning graph databases-a quantitative evaluation. arXiv
preprint arXiv:1301.5121 (2013).

Asad Awan, Ronaldo A. Ferreira, Suresh Jagannathan, and Ananth Grama. 2006. Distributed uniform
sampling in unstructured peer-to-peer networks. In Proceedings of Hawaii International Conference on
System Sciences (HICSS’06), Vol. 9. IEEE, 223c–223c.

Raul Baños, Consolación Gil, Julio Ortega, and Francisco G. Montoya. 2003. Multilevel heuristic algorithm
for graph partitioning. In Proceedings of Applications of Evolutionary Computing. Springer, 143–153.

Una Benlic and Jin-Kao Hao. 2011a. An effective multilevel tabu search approach for balanced graph
partitioning. Computers & Operations Research 38, 7 (2011), 1066–1075.

Una Benlic and Jin-Kao Hao. 2011b. A multilevel memetic approach for improving graph k-partitions. IEEE
Transactions on Evolutionary Computation (TEC) 15, 5 (2011), 624–642.

Thang Nguyen Bui and Byung Ro Moon. 1996. Genetic algorithm and graph partitioning. IEEE Transactions
on Computers (TC) 45, 7 (1996), 841–855.

Pierre Chardaire, Musbah Barake, and Geoff P. McKeown. 2007. A probe-based heuristic for graph parti-
tioning. IEEE Transactions on Computers 56, 12 (2007), 1707–1720.

David Dominguez-Sal, P. Urbón-Bayes, Aleix Giménez-Vañó, Sergio Gómez-Villamor, Norbert Martı́nez-
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